10A, 28V_{IN} High Efficiency DC/DC µModule ### **FEATURES** - Complete Switch Mode Power Supply - Wide Input Voltage Range: 4.5V to 28V - 10A DC, 12A Peak Output Current - Parallel Two µModule™ DC/DC Converters for 20A Output Current - 0.6V to 5V Output Voltage - 1.5% Output Voltage Regulation - Ultrafast Transient Response - Current Mode Control - Pb-Free (e4) RoHS Compliant Package Gold-Pad Finish - Up to 92% Efficiency - Programmable Soft-Start - Output Overvoltage Protection - Optional Short-Circuit Shutdown Timer - Small Footprint, Low Profile (15mm × 15mm × 2.8mm) LGA Package # **APPLICATIONS** - Telecom and Networking Equipment - Servers - Industrial Equipment - Point of Load Regulation **Δ7**, LTC, LT and LTM are registered trademarks of Linear Technology Corporation. μModule is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. ## DESCRIPTION The LTM®4600HV is a complete 10A, DC/DC step down power supply with up to 28V input operation. Included in the package are the switching controller, power FETs, inductor, and all support components. Operating over an input voltage range of 4.5V to 28V, the LTM4600HV supports an output voltage range of 0.6V to 5V, set by a single resistor. This high efficiency design delivers 10A continuous current (12A peak), needing no heat sinks or airflow to meet power specifications. Only bulk input and output capacitors are needed to finish the design. The low profile package (2.8mm) enables utilization of unused space on the bottom of PC boards for high density point of load regulation. High switching frequency and an adaptive on-time current mode architecture enables a very fast transient response to line and load changes without sacrificing stability. Fault protection features include integrated overvoltage and short circuit protection with a defeatable shutdown timer. A built-in soft-start timer is adjustable with a small capacitor. The LTM4600HV is packaged in a thermally enhanced, compact (15mm × 15mm) and low profile (2.8mm) overmolded Land Grid Array (LGA) package suitable for automated assembly by standard surface mount equipment. The LTM4600HV is Pb-free and RoHS compliant. # TYPICAL APPLICATION 10A µModule Power Supply with 4.5V to 28V Input *REVIEW DE-RATING CURVE AT THE HIGHER INPUT VOLTAGE # **ABSOLUTE MAXIMUM RATINGS** #### (Note 1) | FCB, EXTV _{CC} , PGOOD, RUN/SS, V _{OUT} | 0.3V to 6V | |---|---------------| | V _{IN} , SV _{IN} , f _{ADJ} | -0.3V to 28V | | V _{OSET} , COMP | -0.3V to 2.7V | | Operating Temperature Range (Note 2) | 40°C to 85°C | | Junction Temperature | 125°C | | Storage Temperature Range4 | 8°C to 125°C | # PACKAGE/ORDER INFORMATION Consult LTC Marketing for parts specified with wider operating temperature ranges. **ELECTRICAL CHARACTERISTICS** The \bullet denotes the specifications which apply over the -40° C to 85° C temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C, $V_{IN} = 12$ V. External $C_{IN} = 120\mu$ F, $C_{OUT} = 200\mu$ F/Ceramic per typical application (front page) configuration. | SYMBOL | PARAMETER | CONDITIONS | CONDITIONS | | TYP | MAX | UNITS | |-----------------------|---------------------------------|--|------------|----------------|------------------------------|----------------|----------------------------| | V _{IN(DC)} | Input DC Voltage | AbsMax 28V for Tolerance on 24V Inputs | • | 4.5 | | 28 | V | | V _{OUT(DC)} | Output Voltage | FCB = 0V
V _{IN} = 5V or 12V, V _{OUT} = 1.5V, I _{OUT} = 0A | • | 1.478
1.470 | 1.50
1.50 | 1.522
1.530 | V | | Input Specificati | ions | | | | | | | | V _{IN(UVLO)} | Under Voltage Lockout Threshold | I _{OUT} = 0A | | | 3.4 | 4 | V | | Inrush(vin) | Input Inrush Current at Startup | $I_{OUT} = 0A$, $V_{OUT} = 1.5V$, FCB = 0
$V_{IN} = 5V$
$V_{IN} = 12V$
$V_{IN} = 24V$ | | | 0.6
0.7
0.8 | | A
A
A | | $I_{Q(VIN)}$ | Input Supply Bias Current | I _{OUT} = 0A, EXTV _{CC} Open
V _{IN} = 12V, V _{OUT} = 1.5V, FCB = 5V
V _{IN} = 12V, V _{OUT} = 1.5V, FCB = 0V
V _{IN} = 24V, V _{OUT} = 2.5V, FCB = 5V
V _{IN} = 24V, V _{OUT} = 2.5V, FCB = 0V
Shutdown, RUN = 0.8V, V _{IN} = 12V | | | 1.2
42
1.8
36
35 | 75 | mA
mA
mA
mA
μA | | Min On Time | | | | | 100 | | ns | | Min Off Time | | | | | 400 | | ns | | I _{S(VIN)} | Input Supply Current | $\begin{array}{c} V_{\text{IN}} = 12\text{V, } V_{\text{OUT}} = 1.5\text{V, } I_{\text{OUT}} = 10\text{A} \\ V_{\text{IN}} = 12\text{V, } V_{\text{OUT}} = 3.3\text{V, } I_{\text{OUT}} = 10\text{A} \\ V_{\text{IN}} = 5\text{V, } V_{\text{OUT}} = 1.5\text{V, } I_{\text{OUT}} = 10\text{A} \\ V_{\text{IN}} = 24\text{V to } 3.3\text{V at } 10\text{A, EXTV}_{\text{CC}} = 5\text{V} \end{array}$ | | | 1.52
3.13
3.64
1.6 | | A
A
A | # **ELECTRICAL CHARACTERISTICS** The ullet denotes the specifications which apply over the -40° C to 85° C temperature range, otherwise specifications are at $T_A = 25^{\circ}$ C, $V_{IN} = 12V$. Per typical application (front page) configuration. | SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |------------------------------------|---|---|---|----------------|----------------|----------------|-------------------| | Output Specifica | tions | | | | | | | | TOUTDC | Output Continuous Current Range
(See Output Current Derating Curves for
Different V _{IN} , V _{OUT} and T _A) | $V_{IN} = 12V, V_{OUT} = 1.5V$
$V_{IN} = 24V, V_{OUT} = 2.5V \text{ (Note 3)}$ | | 0 | | 10
10 | A
A | | $\Delta V_{OUT}/\Delta V_{IN}$ | Line Regulation Accuracy | V _{OUT} = 1.5V. FCB = 0V, I _{OUT} = 0A,
V _{IN} = 4.5V to 28V | • | | 0.15 | 0.3 | % | | $\Delta V_{OUT}/\Delta I_{OUT}$ | Load Regulation Accuracy | $V_{OUT} = 1.5V$. FCB = 0V, $I_{OUT} = 0A$ to 10A
$V_{IN} = 5V$
$V_{IN} = 12V$ (Note 4) | • | | | ±1
±1.5 | %
% | | V _{OUT(AC)} | Output Ripple Voltage | V _{IN} = 12V, V _{OUT} = 1.5V, FCB = 0V, I _{OUT} = 0A | | | 10 | 15 | mV _{P-P} | | fs | Output Ripple Voltage Frequency | FCB = 0V, I _{OUT} = 5A, V _{IN} = 12V, V _{OUT} = 1.5V | | | 800 | | kHz | | tstart | Turn-On Time | V _{OUT} = 1.5V, I _{OUT} = 10A
V _{IN} = 12V
V _{IN} = 5V | | | 0.5
0.7 | | ms
ms | | ΔV _{OUTLS} | Voltage Drop for Dynamic Load Step | V_{OUT} = 1.5V, Load Step: $0A/\mu s$ to $5A/\mu s$ C_{OUT} = 3 • 22 μ F 6.3V, 470 μ F 4V Pos Cap, See Table 2 | | | 36 | | mV | | t _{SETTLE} | Settling Time for Dynamic Load Step V _{IN} = 12V | Load: 10% to 90% to 10% of Full Load | | | 25 | | μs | | TOUTPK | Output Current Limit | Output Voltage in Foldback V _{IN} = 24V, V _{OUT} = 2.5V V _{IN} = 12V, V _{OUT} = 1.5V V _{IN} = 5V, V _{OUT} = 1.5V | | | 17
17
17 | | A
A
A | | Control Stage | | | | | | | | | V _{OSET} | Voltage at V _{OSET} Pin | I _{OUT} = 0A, V _{OUT} = 1.5V | • | 0.591
0.594 | 0.6
0.6 | 0.609
0.606 | V | | V _{RUN/SS} | RUN ON/OFF Threshold | | | 0.8 | 1.5 | 2 | V | | I _{RUN(C)/SS} | Soft-Start Charging Current | V _{RUN/SS} = 0V | | -0.5 | -1.2 | -3 | μА | | I _{RUN(D)/SS} | Soft-Start Discharging Current | V _{RUN/SS} = 4V | | 0.8 | 1.8 | 3 | μА | | V _{IN} – SV _{IN} | | EXTV _{CC} = 0V, FCB = 0V | | | 100 | | mV | | I _{EXTVCC} | Current into EXTV _{CC} Pin | EXTV _{CC} = 5V, FCB = 0V, V _{OUT} = 1.5V,
I _{OUT} = 0A | | | 16 | | mA | | R _{FBHI} | Resistor Between V _{OUT} and FB Pins | | | | 100 | | kΩ | | $\overline{V_{FCB}}$ | Forced Continuous Threshold | | | 0.57 | 0.6 | 0.63 | V | | I _{FCB} | Forced Continuous Pin Current | V _{FCB} = 0.6V | | | -1 | -2 | μА | | PGOOD Output | | | | | | | | | ΔV_{OSETH} | PGOOD Upper Threshold | V _{OSET} Rising | | 7.5 | 10 | 12.5 | % | | ΔV_{OSETL} | PGOOD Lower Threshold | V _{OSET} Falling | | -7.5 | -10 | -12.5 | % | | $\Delta V_{OSET(HYS)}$ | PG00D Hysteresis | V _{OSET} Returning | | | 2 | | % | | $\overline{V_{PGL}}$ | PGOOD Low Voltage | I _{PGOOD} = 5mA | | | 0.15 | 0.4 | V | **Note 1:** Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. **Note 2:** The LTM4600HVE is guaranteed to meet performance specifications from 0°C to 85°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls. The LTM4600HVI is guaranteed and tested over the -40°C to 85°C temperature range. Note 3: Refer to current de-rating curves and thermal application note. **Note 4:** Test assumes current derating verses temperature. # TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 21 for all curves) # Efficiency vs Load Current with 12V_{IN} (FCB = 0) # Efficiency vs Load Current with 24Vm (FCR = 0) # Efficiency vs Load Current with Different FCB Settings #### 1.2V Transient Response 1.2V AT 5A/µs LOAD STEP C_{OUT} = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POS CAP C3 = 100pF #### 1.5V Transient Response 1.5V AT 5A/µs LOAD STEP C_{OUT} = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POS CAP C3 = 100pF #### 1.8V Transient Response 1.8V AT 5A/µs LOAD STEP C_{OUT} = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POS CAP C3 = 100pF #### 2.5V Transient Response 2.5V AT 5A/µs LOAD STEP C_{OUT} = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POS CAP C3 = 100pF #### 3.3V Transient Response 3.3V AT 5A/µs LOAD STEP COUT = 3 • 22µF 6.3V CERAMICS 470µF 4V SANYO POS CAP C3 = 100pF # TYPICAL PERFORMANCE CHARACTERISTICS (See Figure 21 for all curves) Start-Up, $I_{OUT} = 0A$ $\begin{array}{l} V_{IN}=12V \\ V_{OUT}=1.5V \\ C_{OUT}=200 \mu F \\ \text{NO EXTERNAL SOFT-START CAPACITOR} \end{array}$ #### Start-Up, I_{OUT} = 10A (Resistive Load) $V_{IN} = 12V$ V_{OUT} = 1.5V C_{OUT} = 200µF NO EXTERNAL SOFT-START CAPACITOR #### **Short-Circuit Protection,** $I_{OUT} = 0A$ $V_{IN} = 12V$ $V_{OUT} = 1.5V$ C_{OUT} = 2× 200µF/X5R NO EXTERNAL SOFT-START CAPACITOR #### **Short-Circuit Protection,** $I_{OUT} = 10A$ $\begin{array}{l} V_{\text{IN}} = 12V \\ V_{\text{OUT}} = 1.5V \\ C_{\text{OUT}} = 2 \times 200 \mu\text{F/X5R} \\ \text{NO EXTERNAL SOFT-START CAPACITOR} \end{array}$ #### V_{IN} to V_{OUT} Stepdown Ratio SEE FREQUENCY ADJUSTMENT DISCUSSION FOR $12V_{\text{IN}}$ TO $5V_{\text{OUT}}$ AND $5V_{\text{IN}}$ TO $3.3V_{\text{OUT}}$ Conversion # PIN FUNCTIONS (See Package Description for Pin Assignment) V_{IN} (Bank 1): Power Input Pins. Apply input voltage between these pins and GND pins. Recommend placing input decoupling capacitance directly between V_{IN} pins and GND pins. f_{ADJ} (Pin A15): A 110k resistor from V_{IN} to this pin sets the one-shot timer current, thereby setting the switching frequency. The LTM4600 switching frequency is typically 850kHz. An external resistor to ground can be selected to reduce the one-shot timer current, thus lower the switching frequency to accommodate a higher duty cycle step down requirement. See the applications section. **SV**_{IN} (**Pin A17**): Supply Pin for Internal PWM Controller. Leave this pin open or add additional decoupling capacitance. **EXTV**_{CC} (**Pin A19**): External 5V supply pin for controller. If left open or grounded, the internal 5V linear regulator will power the controller and MOSFET drivers. For high input voltage applications, connecting this pin to an external 5V will reduce the power loss in the power module. The EXTV_{CC} voltage should never be higher than V_{IN} . V_{OSET} (Pin A21): The Negative Input of The Error Amplifier. Internally, this pin is connected to V_{OUT} with a 100k precision resistor. Different output voltages can be programmed with additional resistors between the V_{OSET} and SGND pins. **COMP (Pin B23):** Current Control Threshold and Error Amplifier Compensation Point. The current comparator threshold increases with this control voltage. The voltage ranges from 0V to 2.4V with 0.8V corresponding to zero sense voltage (zero current). **SGND (Pin D23):** Signal Ground Pin. All small-signal components should connect to this ground, which in turn connects to PGND at one point. **RUN/SS (Pin F23):** Run and Soft-Start Control. Forcing this pin below 0.8V will shut down the power supply. Inside the power module, there is a 1000pF capacitor which provides approximately 0.7ms soft-start time with 200µF output capacitance. Additional soft-start time can be achieved by adding additional capacitance between the RUN/SS and SGND pins. The internal short-circuit latchoff can be disabled by adding a resistor between this pin and the V_{IN} pin. This resistor must supply a minimum 5µA pull up current. **FCB (Pin G23):** Forced Continuous Input. Grounding this pin enables forced continuous mode operation regardless of load conditions. Tying this pin above 0.63V enables discontinuous conduction mode to achieve high efficiency operation at light loads. There is an internal 4.75K resistor between the FCB and SGND pins. **PGOOD (Pin J23):** Output Voltage Power Good Indicator. When the output voltage is within 10% of the nominal voltage, the PWRGD is open drain output. Otherwise, this pin is pulled to ground. **PGND (Bank 2):** Power ground pins for both input and output returns. **V_{OUT}** (**Bank 3**): Power Output Pins. Apply output load between these pins and GND pins. Recommend placing High Frequency output decoupling capacitance directly between these pins and GND pins. # SIMPLIFIED BLOCK DIAGRAM Figure 1. Simplified LTM4600HV Block Diagram # **DECOUPLING REQUIREMENTS** $T_A = 25$ °C, $V_{IN} = 12$ V. Use Figure 1 configuration. | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |------------------|--|---|-----|-----|-----|-------| | C _{IN} | External Input Capacitor Requirement (V _{IN} = 4.5V to 28V, V _{OUT} = 1.5V) | I _{OUT} = 10A, 2x 10μF 35V Ceramic
Taiyo Yuden GDK316BJ106ML | 20 | | | μF | | C _{OUT} | External Output Capacitor Requirement (V _{IN} = 4.5V to 28V, V _{OUT} = 1.5V) | I _{OUT} = 10A, Refer to Table 2 in the
Applications Information Section | 100 | 200 | | μF | # **OPERATION** #### µModule Description The LTM4600HV is a standalone non-isolated synchronous switching DC/DC power supply. It can deliver up to 10A of DC output current with only bulk external input and output capacitors. This module provides a precisely regulated output voltage programmable via one external resistor from $0.6V_{DC}$ to $5.0V_{DC}.$ The input voltage range is 4.5V to 28V. A simplified block diagram is shown in Figure 1 and the typical application schematic is shown in Figure 21. The LTM4600HV contains an integrated LTC constant on-time current-mode regulator, ultra-low R_{DS(ON)} FETs with fast switching speed and integrated Schottky diode. The typical switching frequency is 800kHz at full load. With current mode control and internal feedback loop compensation, the LTM4600HV module has sufficient stability margins and good transient performance under a wide range of operating conditions and with a wide range of output capacitors, even all ceramic output capacitors (X5R or X7R). Current mode control provides cycle-by-cycle fast current limit. In addition, foldback current limiting is provided in an over-current condition while V_{FB} drops. Also, the LTM4600HV has defeatable short circuit latch off. Internal overvoltage and undervoltage comparators pull the opendrain PG00D output low if the output feedback voltage exits a $\pm 10\%$ window around the regulation point. Furthermore, in an overvoltage condition, internal top FET Q1 is turned off and bottom FET Q2 is turned on and held on until the overvoltage condition clears. Pulling the RUN/SS pin low forces the controller into its shutdown state, turning off both Q1 and Q2. Releasing the pin allows an internal 1.2 μ A current source to charge up the softstart capacitor. When this voltage reaches 1.5V, the controller turns on and begins switching. At low load current the module works in continuous current mode by default to achieve minimum output voltage ripple. It can be programmed to operate in discontinuous current mode for improved light load efficiency when the FCB pin is pulled up above 0.8V and no higher than 6V. The FCB pin has a 4.75k resistor to ground, so a resistor to V_{IN} can set the voltage on the FCB pin. When EXTV $_{CC}$ pin is grounded or open, an integrated 5V linear regulator powers the controller and MOSFET gate drivers. If a minimum 4.7V external bias supply is applied on the EXTV $_{CC}$ pin, the internal regulator is turned off, and an internal switch connects EXTV $_{CC}$ to the gate driver voltage. This eliminates the linear regulator power loss with high input voltage, reducing the thermal stress on the controller. The maximum voltage on EXTV $_{CC}$ pin is 6V. The EXTV $_{CC}$ voltage should never be higher than the V $_{IN}$ voltage. Also EXTV $_{CC}$ must be sequenced after V $_{IN}$. Recommended for 24V operation to lower temperature in the μ Module. The typical LTM4600HV application circuit is shown in Figure 20. External component selection is primarily determined by the maximum load current and output voltage. #### **Output Voltage Programming and Margining** The PWM controller of the LTM4600HV has an internal $0.6V\pm1\%$ reference voltage. As shown in the block diagram, a 100k/0.5% internal feedback resistor connects V_{OUT} and FB pins. Adding a resistor R_{SET} from V_{OSET} pin to SGND pin programs the output voltage: $$V_0 = 0.6V \bullet \frac{100k + R_{SET}}{R_{SET}}$$ Table 1 shows the standard vaules of 1% R_{SET} resistor for typical output voltages: Table 1. | R_{SET} (k Ω) | Open | 100 | 66.5 | 49.9 | 43.2 | 31.6 | 22.1 | 13.7 | |-------------------------|------|-----|------|------|------|------|------|------| | V ₀ (V) | 0.6 | 1.2 | 1.5 | 1.8 | 2 | 2.5 | 3.3 | 5 | Voltage margining is the dynamic adjustment of the output voltage to its worst case operating range in production testing to stress the load circuitry, verify control/protection functionality of the board and improve the system reliability. Figure 2 shows how to implement margining function with the LTM4600HV. In addition to the feedback resistor $R_{SET}\!_{,}$ several external components are added. Turn off both transistor Q_{UP} and Q_{DOWN} to disable the margining. When Q_{UP} is on and Q_{DOWN} is off, the output Figure 2. voltage is margined up. The output voltage is margined down when Q_{DOWN} is on and Q_{UP} is off. If the output voltage V_0 needs to be margined up/down by $\pm M\%$, the resistor values of R_{UP} and R_{DOWN} can be calculated from the following equations: $$\frac{(R_{SET} || R_{UP}) \bullet V_0 \bullet (1 + M\%)}{(R_{SET} || R_{UP}) + 100k\Omega} = 0.6V$$ $$\frac{R_{SET} \bullet V_0 \bullet (1-M\%)}{R_{SET} + (100k\Omega \|R_{DOWN})} = 0.6V$$ #### **Input Capacitors** The LTM4600HV μ Module should be connected to a low ac-impedance DC source. High frequency, low ESR input capacitors are required to be placed adjacent to the module. In Figure 20, the bulk input capacitor C_{IN} is selected for its ability to handle the large RMS current into the converter. For a buck converter, the switching duty-cycle can be estimated as: $$D = \frac{V_0}{V_{IN}}$$ Without considering the inductor current ripple, the RMS current of the input capacitor can be estimated as: $$I_{CIN(RMS)} = \frac{I_{O(MAX)}}{n\%} \bullet \sqrt{D \bullet (1-D)}$$ In the above equation, $\eta\%$ is the estimated efficiency of the power module. C1 can be a switcher-rated electrolytic aluminum capacitor, OS-CON capacitor or high volume ceramic capacitors. Note the capacitor ripple current ratings are often based on only 2000 hours of life. This makes it advisable to properly derate the input capacitor, or choose a capacitor rated at a higher temperature than required. Always contact the capacitor manufacturer for derating requirements. In Figure 16, the input capacitors are used as high frequency input decoupling capacitors. In a typical 10A output application, 1-2 pieces of very low ESR X5R or X7R, 10µF ceramic capacitors are recommended. This decoupling capacitor should be placed directly adjacent the module input pins in the PCB layout to minimize the trace inductance and high frequency AC noise. #### **Output Capacitors** The LTM4600HV is designed for low output voltage ripple. The bulk output capacitors C_{OUT} is chosen with low enough effective series resistance (ESR) to meet the output voltage ripple and transient requirements. C_{OUT} can be low ESR tantalum capacitor, low ESR polymer capacitor or ceramic capacitor (X5R or X7R). The typical capacitance is 200µF if all ceramic output capacitors are used. The internally optimized loop compensation provides sufficient stability margin for all ceramic capacitors applications. Additional output filtering may be required by the system designer, if further reduction of output ripple or dynamic transient spike is required. Refer to Table 2 for an output capacitance matrix for each output voltage Droop, peak to peak deviation and recovery time during a 5A/µs transient with a specific output capacitance. # Fault Conditions: Current Limit and Over current Foldback The LTM4600HV has a current mode controller, which inherently limits the cycle-by-cycle inductor current not only in steady state operation, but also in transient. To further limit current in the event of an over load condition, the LTM4600HV provides foldback current limiting. If the output voltage falls by more than 50%, then the maximum output current is progressively lowered to about one sixth of its full current limit value. #### Soft-Start and Latchoff with the RUN/SS pin The RUN/SS pin provides a means to shut down the LTM4600HV as well as a timer for soft-start and overcurrent latchoff. Pulling the RUN/SS pin below 0.8V puts the LTM4600HV into a low quiescent current shutdown (IQ \leq 75µA). Releasing the pin allows an internal 1.2µA current source to charge up the timing capacitor CSS. Inside LTM4600HV, there is an internal 1000pF capacitor from RUN/SS pin to ground. If RUN/SS pin has an external capacitor CSS_EXT to ground, the delay before starting is about: $$t_{DELAY} = \frac{1.5V}{1.2\mu A} \bullet (C_{SS_EXT} + 1000pF)$$ When the voltage on RUN/SS pin reaches 1.5V, the LTM4600HV internal switches are operating with a clamping of the maximum output inductor current limited by the RUN/SS pin total soft-start capacitance. As the RUN/SS pin voltage rises to 3V, the soft-start clamping of the inductor current is released. ### VIN to Vout Stepdown Ratios There are restrictions in the maximum V_{IN} to V_{OUT} step down ratio that can be achieved for a given input voltage. These contraints are shown in the Typical Performance Characteristics curves labeled " V_{IN} to V_{OUT} Stepdown Ratio". Note that additional thermal de-rating may apply. See the Thermal Considerations and Output Current De-Rating sections of this data sheet. Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 21) #### TYPICAL MEASURED VALUES | C _{OUT1} VENDORS | PART NUMBER | C _{OUT2} VENDORS | PART NUMBER | |---------------------------|----------------------------------|---------------------------|---------------------------| | TDK | C4532X5R0J107MZ (100UF,6.3V) | SANYO POS CAP | 6TPE330MIL (330μF, 6.3V) | | TAIYO YUDEN | JMK432BJ107MU-T (100μF, 6.3V) | SANYO POS CAP | 2R5TPE470M9 (470μF, 2.5V) | | TAIYO YUDEN | JMK316BJ226ML-T501 (22μF, 6.3V) | SANYO POS CAP | 4TPE470MCL (470μF, 4V) | | TAIYO YUDEN | JMK316BJ226ML-T501 (22μF, 6.3V) | SANYO POS CAP | 6TPD470M (470μF, 6.3V) | | V _{OUT} (V) | C _{IN}
(CERAMIC) | C _{IN}
(BULK) | C _{OUT1}
(CERAMIC) | C _{OUT2}
(BULK) | C _{COMP} | C3 | V _{IN} (V) | DROOP
(mV) | PEAK TO PEAK
(mV) | RECOVERY TIME (μs) | LOAD STEP
(A/µs) | |----------------------|------------------------------|---------------------------|----------------------------------|-----------------------------|-------------------|----------------|---------------------|---------------|----------------------|--------------------|---------------------| | 1.2 | 2 × 10μF 35V | 150µF 35V | 3 × 22μF 6.3V | 470µF 4V | NONE | 100pF | 5 | 35 | 68 | 25 | 5 | | 1.2 | 2 × 10μF 35V | 150μF 35V | 1 × 100µF 6.3V | 470μF 2.5V | NONE | 100pF | 5 | 35 | 70 | 20 | 5 | | 1.2 | 2 × 10μF 35V | 150µF 35V | 2 × 100µF 6.3V | 330μF 6.3V | NONE | 100pF | 5 | 40 | 80 | 20 | 5 | | 1.2 | 2 × 10μF 35V | 150μF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 5 | 49 | 98 | 20 | 5 | | 1.2 | 2 × 10μF 35V | 150µF 35V | 3 × 22μF 6.3V | 470μF 4V | NONE | 100pF | 12 | 35 | 68 | 25 | 5 | | 1.2 | 2 × 10μF 35V | 150μF 35V | 1 × 100μF 6.3V | 470μF 2.5V | NONE | 100pF | 12 | 35 | 70 | 20 | 5 | | 1.2 | 2 × 10μF 35V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 12 | 40 | 80 | 20 | 5 | | 1.2 | 2 × 10μF 35V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 12 | 49 | 98 | 20 | 5 | | 1.5 | 2 × 10μF 35V | 150µF 35V | 3 × 22μF 6.3V | 470μF 4V | NONE | 100pF | 5 | 36 | 75 | 25 | 5 | | 1.5 | 2 × 10μF 35V | 150µF 35V | 1 × 100µF 6.3V | 470μF 2.5V | NONE | 100pF | 5 | 37 | 79 | 20 | 5 | | 1.5 | 2 × 10μF 35V | 150µF 35V | 2 × 100μF 6.3V | 330µF 6.3V | NONE | 100pF | 5 | 44 | 84 | 20 | 5 | | 1.5 | 2 × 10μF 35V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 5 | 61 | 118 | 20 | 5 | | 1.5 | 2 × 10μF 35V | 150µF 35V | 3 × 22μF 6.3V | 470µF 4V | NONE | 100pF | 12 | 36 | 75 | 25 | 5 | | 1.5 | 2 × 10μF 35V | 150µF 35V | 1 × 100µF 6.3V | 470μF 2.5V | NONE | 100pF | 12 | 37 | 79 | 20 | 5 | | 1.5 | 2 × 10µF 35V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 12 | 44 | 89 | 20 | 5 | | 1.5 | 2 × 10µF 35V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 12 | 54 | 108 | 20 | 5 | | 1.8 | 2 × 10µF 35V | 150µF 35V | 3 × 22μF 6.3V | 470µF 4V | NONE | 100pF | 5 | 40 | 81 | 30 | 5 | | 1.8 | 2 × 10µF 35V | 150µF 35V | 1 × 100µF 6.3V | 470μF 2.5V | NONE | 100pF | 5 | 44 | 88 | 20 | 5 | | 1.8 | 2 × 10µF 35V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 5 | 46 | 91 | 20 | 5 | | 1.8 | 2 × 10µF 35V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 5 | 62 | 128 | 20 | 5 | | 1.8 | 2 × 10µF 35V | 150µF 35V | 3 × 22μF 6.3V | 470µF 4V | NONE | 100pF | 12 | 40 | 81 | 30 | 5 | | 1.8 | 2 × 10µF 35V | 150µF 35V | 1 × 100µF 6.3V | 470μF 2.5V | NONE | 100pF | 12 | 44 | 85 | 20 | 5 | | 1.8 | 2 × 10µF 35V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 12 | 44
62 | 91 | 20
20 | 5
5 | | 1.8 | 2 × 10µF 35V | 150µF 35V | 4 × 100μF 6.3V
1 × 100μF 6.3V | NONE
470uE 4V | NONE
NONE | 100pF | 12
5 | 48 | 125
103 | 30 | 5 | | 2.5 | 2 × 10µF 35V | 150µF 35V | | 470µF 4V | NONE | 100pF
100pF | 5 | 56 | 113 | 30 | 5 | | 2.5 | 2 × 10μF 35V
2 × 10μF 35V | 150µF 35V
150µF 35V | 2 × 100μF 6.3V
3 × 22μF 6.3V | 330μF 6.3V
470μF 4V | NONE | 100pF | 5 | 57 | 116 | 30 | 5 | | 2.5 | 2 × 10μF 35V
2 × 10μF 35V | 150μF 35V
150μF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 5 | 60 | 115 | 25 | 5 | | 2.5 | 2 × 10μF 35V | 150μF 35V | 1 × 100µF 6.3V | 470µF 4V | NONE | 100pf | 12 | 48 | 103 | 30 | 5 | | 2.5 | 2 × 10μF 35V | 150μF 35V | 3 × 22μF 6.3V | 470μF 4V | NONE | 100pf | 12 | 51 | 102 | 30 | 5 | | 2.5 | 2 × 10μF 35V | 150μF 35V | 2 × 100μF 6.3V | 330µF 6.3V | NONE | 100pf | 12 | 56 | 113 | 30 | 5 | | 2.5 | 2 × 10μF 35V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 12 | 70 | 159 | 25 | 5 | | 2.5 | 2 × 10μF 35V | 150µF 35V | 3 × 22μF 6.3V | 470µF 6.3V | NONE | 100pF | 24 | 56 | 112 | 30 | 5 | | 2.8 | 2 × 10μF 35V | 150µF 35V | 3 × 22μF 6.3V | 470µF 6.3V | NONE | 100pF | 24 | 50 | 100 | 30 | 5 | | 3.3 | 2 × 10µF 35V | 150µF 35V | 2 × 100µF 6.3V | 330µF 6.3V | NONE | 100pF | 7 | 64 | 126 | 30 | 5 | | 3.3 | 2 × 10μF 35V | 150µF 35V | 1 × 100µF 6.3V | 470μF 4V | NONE | 100pF | 7 | 66 | 132 | 30 | 5 | | 3.3 | 2 × 10μF 35V | 150µF 35V | 3 × 22μF 6.3V | 470μF 4V | NONE | 100pF | 7 | 82 | 166 | 35 | 5 | | 3.3 | 2 × 10μF 35V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 7 | 100 | 200 | 25 | 5 | | 3.3 | 2 × 10μF 35V | 150µF 35V | 1 × 100µF 6.3V | 470μF 4V | NONE | 100pF | 12 | 52 | 106 | 30 | 5 | | 3.3 | 2 × 10μF 35V | 150µF 35V | 3 × 22μF 6.3V | 470μF 4V | NONE | 100pF | 12 | 64 | 129 | 35 | 5 | | 3.3 | 2 × 10μF 35V | 150µF 35V | 2 × 100μF 6.3V | 330µF 6.3V | NONE | 100pF | 12 | 64 | 126 | 30 | 5 | | 3.3 | 2 × 10μF 35V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 12 | 76 | 144 | 25 | 5 | | 3.3 | 2 × 10μF 35V | 150µF 35V | 3 × 22μF 6.3V | 470μF 6.3V | NONE | 100pF | 24 | 74 | 149 | 30 | 5 | | 5 | 2 × 10µF 35V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 15 | 188 | 375 | 25 | 5 | | 5 | 2 × 10µF 35V | 150µF 35V | 4 × 100μF 6.3V | NONE | NONE | 100pF | 20 | 159 | 320 | 25 | 5 | After the controller has been started and given adequate time to charge up the output capacitor, CSS is used as a short-circuit timer. After the RUN/SS pin charges above 4V, if the output voltage falls below 75% of its regulated value, then a short-circuit fault is assumed. A 1.8µA current then begins discharging CSS. If the fault condition persists until the RUN/SS pin drops to 3.5V, then the controller turns off both power MOSFETs, shuting down the converter permanently. The RUN/SS pin must be actively pulled down to ground in order to restart operation. The over-current protection timer requires the soft-start timing capacitor CSS be made large enough to guarantee that the output is in regulation by the time CSS has reached the 4V threshold. In general, this will depends upon the size of the output capacitance, output voltage and load current characteristic. A minimum external soft-start capacitor can be estimated from: $$C_{SS_EXT} + 1000 pF > C_{OUT} \bullet V_{OUT} (10^{-3} [F/V_S])$$ Generally 0.1µF is more than sufficient. Since the load current is already limited by the current mode control and current foldback circuitry during a shortcircuit, over-current latchoff operation is NOT always needed or desired, especially the output has large amount of capacitance or the load draw huge current during start up. The latchoff feature can be overridden by a pull-up current greater than $5\mu A$ but less than $80\mu A$ to the RUN/SS pin. The additional current prevents the discharge of CSS during a fault and also shortens the soft-start period. Using a resistor from RUN/SS pin to V_{IN} is a simple solution to defeat latchoff. Any pull-up network must be able to maintain RUN/SS above 4V maximum latchoff threshold and overcome the $4\mu A$ maximum discharge current. Figure 3 shows a conceptual drawing of V_{RUN} during startup and short circuit. Figure 3. RUN/SS Pin Voltage During Startup and Short-Circuit Protection Figure 4. Defeat Short-Circuit Latchoff with a Pull-Up Resistor to $\ensuremath{\text{V}_{\text{IN}}}$ LINEAR #### Enable The RUN/SS pin can be driven from logic as shown in Figure 5. This function allows the LTM4600HV to be turned on or off remotely. The \overline{ON} signal can also control the sequence of the output voltage. Figure 5. Enable Circuit with External Logic #### **Output Voltage Tracking** For the applications that require output voltage tracking, several LTM4600HV modules can be programmed by the power supply tracking controller such as the LTC2923. Figure 6 shows a typical schematic with LTC2923. Coincident, ratiometric and offset tracking for V_0 rising and Figure 6. Output Voltage Tracking with the LTC2923 Controller falling can be implemented with different sets of resistor values. See the LTC2923 data sheet for more details. #### **EXTV_{CC} Connection** An internal low dropout regulator produces an internal 5V supply that powers the control circuitry and FET drivers. Therefore, if the system does not have a 5V power rail, the LTM4600HV can be directly powered by V_{IN} . The gate driver current through LDO is about 18mA. The internal LDO power dissipation can be calculated as: $$P_{LDO_LOSS} = 18mA \cdot (V_{IN} - 5V)$$ The LTM4600HV also provides an external gate driver voltage pin EXTV $_{CC}$. If there is a 5V rail in the system, it is recommended to connect EXTV $_{CC}$ pin to the external 5V rail. Whenever the EXTV $_{CC}$ pin is above 4.7V, the internal 5V LDO is shut off and an internal 50mA P-channel switch connects the EXTV $_{CC}$ to internal 5V. Internal 5V is supplied from EXTV $_{CC}$ until this pin drops below 4.5V. Do not apply more than 6V to the EXTV $_{CC}$ pin and ensure that EXTV $_{CC}$ < V $_{IN}$. The following list summaries the possible connections for EXTV $_{CC}$: - 1. EXTV $_{\rm CC}$ grounded. Internal 5V LDO is always powered from the internal 5V regulator. - 2. EXTV_{CC} connected to an external supply. Internal LDO is shut off. A high efficiency supply compatible with the MOSFET gate drive requirements (typically 5V) can improve overall efficiency. With this connection, it is always required that the EXTV_{CC} voltage can not be higher than V_{IN} pin voltage. - 3. EXTV_{CC} is recommended for $V_{IN} > 20V$ ### **Discontinuous Operation and FCB Pin** The FCB pin determines whether the internal bottom MOSFET remains on when the inductor current reverses. There is an internal 4.75k pulling down resistor connecting this pin to ground. The default light load operation mode is forced continuous (PWM) current mode. This mode provides minimum output voltage ripple. In the application where the light load efficiency is important, tying the FCB pin above 0.6V threshold enables discontinuous operation where the bottom MOSFET turns off when inductor current reverses. Therefore, the conduction loss is minimized and light load efficient is improved. The penalty is that the controller may skip cycle and the output voltage ripple increases at light load. #### Paralleling Operation with Load Sharing Two or more LTM4600HV modules can be paralleled to provide higher than 10A output current. Figure 7 shows the necessary interconnection between two paralleled modules. The OPTI-LOOP™ current mode control ensures good current sharing among modules to balance the thermal stress. The new feedback equation for two or more LTM4600HVs in parallel is: $$V_{OUT} = 0.6V \bullet \frac{\frac{100k}{N} + R_{SET}}{R_{SET}}$$ where N is the number of LTM4600HVs in parallel. Figure 7. Parallel Two µModules with Load Sharing OPTI-LOOP is a trademark of Linear Technology Corporation. #### Thermal Considerations and Output Current Derating The power loss curves in Figures 8 and 15 can be used in coordination with the load current derating curves in Figures 9 to 14, and Figures 16 to 19 for calculating an approximate θ_{JA} for the module with various heatsinking methods. Thermal models are derived from several temperature measurements at the bench, and thermal modeling analysis. Application Note 103 provides a detailed explanation of the analysis for the thermal models, and the derating curves. Tables 3 and 4 provide a summary of the equivalent θ_{JA} for the noted conditions. These equivalent θ_{JA} parameters are correlated to the measure values, and improved with air-flow. The case temperature is maintained at 100°C or below for the derating curves. This allows for 4W maximum power dissipation in the total module with top and bottom heatsinking, and 2W power dissipation through the top of the module with an approximate θ_{JC} between 6°C/W to 9°C/W. This equates to a total of 124°C at the junction of the device. ## **Safety Considerations** The LTM4600HV modules do not provide isolation from V_{IN} to V_{OUT} . There is no internal fuse. If required, a slow blow fuse with a rating twice the maximum input current should be provided to protect each unit from catastrophic failure. Figure 8. 1.5V Power Loss Curves vs Load Current Figure 9. No Heatsink Figure 10. BGA Heatsink Figure 11. No Heatsink Figure 12. BGA Heatsink Figure 13. No Heatsink Figure 14. BGA Heatsink Figure 15. 3.3V Power Loss Curves vs Load Current Figure 16. No Heatsink Figure 17. BGA Heatsink Figure 18. No Heatsink Figure 19. BGA Heatsink Table 3. 1.5V Output | DERATING CURVE | V _{IN} (V) | POWER LOSS CURVE | AIR FLOW (LFM) | HEATSINK | θ _{JA} (°C/W) | |--------------------|---------------------|------------------|----------------|--------------|------------------------| | Figures 9, 11, 13 | 5, 12, 18 | Figure 8 | 0 | None | 15.2 | | Figures 9, 11, 13 | 5, 12, 18 | Figure 8 | 200 | None | 14 | | Figures 9, 11, 13 | 5, 12, 18 | Figure 8 | 400 | None | 12 | | Figures 10, 12, 14 | 5, 12, 18 | Figure 8 | 0 | BGA Heatsink | 13.9 | | Figures 10, 12, 14 | 5, 12, 18 | Figure 8 | 200 | BGA Heatsink | 11.3 | | Figures 10, 12, 14 | 5, 12, 18 | Figure 8 | 400 | BGA Heatsink | 10.25 | Table 4. 3.3V Output | rabio ii olor oatpat | | | | | | |----------------------|---------------------|------------------|----------------|--------------|------------------------| | DERATING CURVE | V _{IN} (V) | POWER LOSS CURVE | AIR FLOW (LFM) | HEATSINK | θ _{JA} (°C/W) | | Figures 16, 18 | 12, 24 | Figure 15 | 0 | None | 15.2 | | Figures 16, 18 | 12, 24 | Figure 15 | 200 | None | 14.6 | | Figures 16, 18 | 12, 24 | Figure 15 | 400 | None | 13.4 | | Figures 17, 19 | 12, 24 | Figure 15 | 0 | BGA Heatsink | 13.9 | | Figures 17, 19 | 12, 24 | Figure 15 | 200 | BGA Heatsink | 11.1 | | Figures 17, 19 | 12, 24 | Figure 15 | 400 | BGA Heatsink | 10.5 | | | | | | | | #### Layout Checklist/Example The high integration of the LTM4600HV makes the PCB board layout very simple and easy. However, to optimize its electrical and thermal performance, some layout considerations are still necessary. - \bullet Use large PCB copper areas for high current path, including $V_{IN},$ PGND and $V_{OUT}.$ It helps to minimize the PCB conduction loss and thermal stress - Place high frequency ceramic input and output capacitors next to the V_{IN}, PGND and V_{OUT} pins to minimize high frequency noise - Place a dedicated power ground layer underneath the unit - To minimize the via conduction loss and reduce module thermal stress, use multiple vias for interconnection between top layer and other power layers - Do not put via directly on pad - Use a separated SGND ground copper area for components connected to signal pins. Connect the SGND to PGND underneath the unit Figure 20 gives a good example of the recommended layout. Figure 20. Recommended PCB Layout #### **Frequency Adjustment** The LTM4600HV is designed to typically operate at 800kHz across most input and output conditions. The f_{ADJ} pin is typically left open or decoupled with an optional 1000pf capacitor. The switching frequency has been optimized for maintaining constant output ripple noise over the operating ranges. The switching frequency will increase up to typically 1.2MHz for 5V and 3.3V outputs to limit increase output ripple noise. The switching frequency can be adjusted lower to accommodate high duty cycle requirements like 5V to 3.3V, and 12V to 5V. There are limitations to input voltage range for the higher duty cycle designs that limit the internal inductor ripple current so that the inductor will not saturate at higher load current. Examples: LTM4600HV minimum on-time = 100ns LTM4600HV minimum off-time = 400ns Equations for setting frequency: $I_{ON} = V_{IN} - 0.7V/110k$; for 12V input, $I_{ON} = 103\mu A$ frequency = $(I_{ON}/[2.4V \cdot 10pF]) \cdot (DC)$; DC = duty cycle, duty cycle is (V_{OUT}/V_{IN}) $t = t_{ON} + t_{OFF}$, $t_{ON} = on\text{-time}$, $t_{OFF} = off\text{-time}$ of the switching period; t = 1/frequency t_{OFF} must be greater than 400ns, or $t - t_{ON} > 400$ ns. $$t_{ON} = DC \cdot t$$ 1MHz frequency or 1µs period is chosen. $$t_{ON} = 0.41 \bullet 1 \mu s \cong 410 ns$$ $$t_{OFF} = 1 \mu s - 410 ns \approx 590 ns$$ $t_{\mbox{\scriptsize ON}}$ and $t_{\mbox{\scriptsize OFF}}$ are above the minimums with adquate guard band. Using the frequency = $(I_{ON}/[2.4V \cdot 10pF]) \cdot (DC)$, solve for $I_{ON} = (1MHz \cdot 2.4V \cdot 10pF) \cdot (1/0.41) \cong 58\mu A$. I_{ON} current calculated from 12V input was $103\mu A$, so a resistor from f_{ADJ} to ground = $(0.7V/15k) = 46\mu A$. $103\mu A - 46\mu A = 57\mu A$, sets the adequate I_{ON} current for proper frequency range for the higher duty cycle conversion of 12V to 5V. Input voltage range is limited to 9V to 16V. Higher input voltages can be used without the 15k on f_{ADJ} . The inductor ripple current gets too high above 16V, and the 400ns minimum off-time is limited below 9V. Equations for setting frequency: $I_{ON} = V_{IN} - 0.7V/110k$; for 5V input, $I_{ON} = 39\mu A$ frequency = $(I_{ON}/[2.4V \cdot 10pF]) \cdot (DC)$; DC = duty cycle, duty cycle is (V_{OLIT}/V_{IN}) $t = t_{ON} + t_{OFF}$, $t_{ON} = on\text{-time}$, $t_{OFF} = off\text{-time}$ of the switching period; t = 1/frequency t_{OFF} must be greater than 400ns, or $t - t_{ON} > 400$ ns. $$t_{ON} = DC \bullet t$$ ~450kHz frequency or 2.22µs period is chosen. Frequency range is about 450kHz to 650kHz from 4.5V to 7V input. $$t_{ON} = 0.66 \cdot 2.22 \mu s \approx 1.46 ns$$ $$t_{OFF} = 2\mu s - 1.32ns \approx 760ns$$ $t_{\mbox{\scriptsize ON}}$ and $t_{\mbox{\scriptsize OFF}}$ are above the minimums with adquate guard band. Using the frequency = $(I_{ON}/[2.4V \cdot 10pF]) \cdot (DC)$, solve for I_{ON} = $(450\text{kHz} \cdot 2.4V \cdot 10pF) \cdot (1/0.66) \cong 16\mu\text{A}$. I_{ON} current calculated from 5V input was $39\mu\text{A}$, so a resistor from f_{ADJ} to ground = $(0.7V/30.1k) = 23\mu\text{A}$. $39\mu\text{A} - 23\mu\text{A} = 16\mu\text{A}$, sets the adequate I_{ON} current for proper frequency range for the higher duty cycle conversion of 5V to 3.3V. Input voltage range is limited to 4.5V to 7V. Higher input voltages can be used without the 30.1k on f_{ADJ} . The inductor ripple current gets too high above 7V, and the 400ns minimum off-time is limited below 4.5V. #### 5V to 3.3V at 8A #### 12V to 5V at 8A # TYPICAL APPLICATION Figure 21. Typical Application, 5V to 24V Input, 0.6V to 5V Output, 10A Max # TYPICAL APPLICATION #### **Parallel Operation and Load Sharing** # Current Sharing Between Two LTM4600HV Modules # PACKAGE DESCRIPTION # PACKAGE DESCRIPTION ### Pin Assignment Tables (Arranged by Pin Number) | PIN NAME |------------------------|--------------------|---------------------|--------------------|---------------------|--------------------|----------|----------| | A1 - | B1 V _{IN} | C1 - | D1 V _{IN} | E1 - | F1 V _{IN} | G1 PGND | H1 - | | A2 - | B2 - | C2 - | D2 - | E2 - | F2 - | G2 - | H2 - | | A3 V _{IN} | В3 - | C3 - | D3 - | E3 - | F3 - | G3 - | H3 - | | A4 - | B4 - | C4 - | D4 - | E4 - | F4 - | G4 - | H4 - | | A5 V _{IN} | B5 - | C5 - | D5 - | E5 - | F5 - | G5 - | H5 - | | A6 - | B6 - | C6 - | D6 - | E6 - | F6 - | G6 - | H6 - | | A7 V _{IN} | B7 - | C7 - | D7 - | E7 - | F7 - | G7 - | H7 PGND | | A8 - | B8 - | C8 - | D8 - | E8 - | F8 - | G8 - | Н8 - | | A9 V _{IN} | В9 - | C9 - | D9 - | E9 - | F9 - | G9 - | H9 PGND | | A10 - | B10 - | C10 V _{IN} | D10 - | E10 V _{IN} | F10 - | G10 - | H10 - | | A11 V _{IN} | B11 - | C11 - | D11 - | E11 - | F11 - | G11 - | H11 PGND | | A12 - | B12 - | C12 V _{IN} | D12 - | E12 V _{IN} | F12 - | G12 - | H12 - | | A13 V _{IN} | B13 - | C13 - | D13 - | E13 - | F13 - | G13 - | H13 PGND | | A14 - | B14 - | C14 V _{IN} | D14 - | E14 V _{IN} | F14 - | G14 - | H14 - | | A15 f _{ADJ} | B15 - | C15 - | D15 - | E15 - | F15 - | G15 - | H15 PGND | | A16 - | B16 - | C16 - | D16 - | E16 - | F16 - | G16 - | H16 - | | A17 SV _{IN} | B17 - | C17 - | D17 - | E17 - | F17 - | G17 - | H17 PGND | | A18 - | B18 - | C18 - | D18 - | E18 - | F18 - | G18 - | H18 - | | A19 EXTV _{CC} | B19 - | C19 - | D19 - | E19 - | F19 - | G19 - | H19 - | | A20 - | B20 - | C20 - | D20 - | E20 - | F20 - | G20 - | H20 - | | A21 V _{OSET} | B21 - | C21 - | D21 - | E21 - | F21 - | G21 - | H21 - | | A22 - | B22 - | C22 - | D22 - | E22 - | F22 - | G22 - | H22 - | | A23 - | B23 COMP | C23 - | D23 SGND | E23 - | F23 RUN/SS | G23 FCB | H23 - | | PI | N NAME | PIN |-----|--------|----------|----------|----------|----------|----------------------|----------------------|----------------------| | J1 | PGND | K1 - | L1 - | M1 - | N1 - | P1 - | R1 - | T1 - | | J2 | - | K2 - | L2 PGND | M2 PGND | N2 PGND | P2 V _{OUT} | R2 V _{OUT} | T2 V _{OUT} | | J3 | - | K3 - | L3 - | M3 - | N3 - | P3 - | R3 - | T3 - | | J4 | - | K4 - | L4 PGND | M4 PGND | N4 PGND | P4 V _{OUT} | R4 V _{OUT} | T4 V _{OUT} | | J5 | - | K5 - | L5 - | M5 - | N5 - | P5 - | R5 - | T5 - | | J6 | - | K6 - | L6 PGND | M6 PGND | N6 PGND | P6 V _{OUT} | R6 V _{OUT} | T6 V _{OUT} | | J7 | - | K7 PGND | L7 - | M7 - | N7 - | P7 - | R7 - | T7 - | | J8 | - | K8 | L8 PGND | M8 PGND | N8 PGND | P8 V _{OUT} | R8 V _{OUT} | T8 V _{OUT} | | J9 | - | K9 PGND | L9 - | M9 - | N9 - | P9 - | R9 - | Т9 - | | J10 | - | K10 | L10 PGND | M10 PGND | N10 PGND | P10 V _{OUT} | R10 V _{OUT} | T10 V _{OUT} | | J11 | - | K11 PGND | L11 - | M11 - | N11 - | P11 - | R11 - | T11 - | | J12 | - | K12 - | L12 PGND | M12 PGND | N12 PGND | P12 V _{OUT} | R12 V _{OUT} | T12 V _{OUT} | | J13 | - | K13 PGND | L13 - | M13 - | N13 - | P13 - | R13 - | T13 - | | J14 | - | K14 - | L14 PGND | M14 PGND | N14 PGND | P14 V _{OUT} | R14 V _{OUT} | T14 V _{OUT} | | J15 | - | K15 PGND | L15 - | M15 - | N15 - | P15 - | R15 - | T15 - | | J16 | - | K16 - | L16 PGND | M16 PGND | N16 PGND | P16 V _{OUT} | R16 V _{OUT} | T16 V _{OUT} | | J17 | - | K17 PGND | L17 - | M17 - | N17 - | P17 - | R17 - | T17 - | | J18 | - | K18 - | L18 PGND | M18 PGND | N18 PGND | P18 V _{OUT} | R18 V _{OUT} | T18 V _{OUT} | | J19 | - | K19 - | L19 - | M19 - | N19 - | P19 - | R19 - | T19 - | | J20 | - | K20 - | L20 PGND | M20 PGND | N20 PGND | P20 V _{OUT} | R20 V _{OUT} | T20 V _{OUT} | | J21 | - | K21 - | L21 - | M21 - | N21 - | P21 - | R21 - | T21 - | | J22 | - | K22 - | L22 PGND | M22 PGND | N22 PGND | P22 V _{OUT} | R22 V _{OUT} | T22 V _{OUT} | | J23 | PG00D | K23 - | L23 - | M23 - | N23 - | P23 - | R23 - | T23 - | # PACKAGE DESCRIPTION ### Pin Assignment Tables (Arranged by Pin Number) | PIN NAME | | | | | | | |---|--|--|--|--|--|--| | G1 | PGND | | | | | | | H7
H9
H11
H13
H15
H17 | PGND
PGND
PGND
PGND
PGND
PGND | | | | | | | J1 | PGND | | | | | | | K7
K9
K11
K13
K15
K17 | PGND
PGND
PGND
PGND
PGND
PGND | | | | | | | L2
L4
L6
L8
L10
L12
L14
L16
L18
L20
L22 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | | | | | M2
M4
M6
M8
M10
M12
M14
M16
M18
M20
M22 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | | | | | N2
N4
N6
N8
N10
N12
N14
N16
N18
N20
N22 | PGND
PGND
PGND
PGND
PGND
PGND
PGND
PGND | | | | | | | PIN NAME | | | |---|---|--| | P2
P4
P6
P8
P10
P12
P14
P16
P18
P20
P22 | VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT | | | R2
R4
R6
R8
R10
R12
R14
R16
R18
R20
R22 | VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT | | | T2
T4
T6
T8
T10
T12
T14
T16
T18
T20
T22 | VOUT VOUT VOUT VOUT VOUT VOUT VOUT VOUT | | | PIN NAME | | |------------------------------------|---| | A3
A5
A7
A9
A11
A13 | VIN
VIN
VIN
VIN
VIN
VIN | | B1 | V _{IN} | | C10
C12
C14 | V _{IN}
V _{IN}
V _{IN} | | D1 | V _{IN} | | E10
E12
E14 | V _{IN}
V _{IN}
V _{IN} | | F1 | V _{IN} | | PIN NAME | | | |----------|--------------------|--| | A15 | f _{ADJ} | | | A17 | SV _{IN} | | | A19 | EXTV _{CC} | | | A21 | V _{OSET} | | | B23 | COMP | | | D23 | SGND | | | F23 | RUN/SS | | | G23 | FCB | | | J23 | PG00D | | | | | | # TYPICAL APPLICATION #### 1.8V, 10A Regulator # **RELATED PARTS** | PART NUMBER | DESCRIPTION | COMMENTS | |---------------|--|--| | LTC2900 | Quad Supply Monitor with Adjustable
Reset Timer | Monitors Four Supplies; Adjustable Reset Timer | | LTC2923 | Power Supply Tracking Controller | Tracks Both Up and Down; Power Supply Sequencing | | LT3825/LT3837 | Synchronous Isolated Flyback
Controllers | No Optocoupler Required; 3.3V, 12A Output; Simple Design |